PSWS, HamSCI's Personal Space Weather Station: Hosts Wanted!

Gary Mikitin AF8A

Amateur Radio Community Coordinator

HamSCI Community

HamCon Colorado®
October 23, 2025

What is Amateur (Ham) Radio?

Hobby for Radio Enthusiasts

- Communicators
- Builders
- Experimenters

Wide-reaching Demographic

- All ages & walks of life
- Over 760,000 US hams; ~3 million Worldwide

Licensed by the Federal Government

- Basic RF Electrical Engineering Knowledge
- Provides a path to learning
- Licensing ensures a basic interest and knowledge level from each participant
- Each ham has a government-issued call sign
- No License Needed for Receiving (SWLs)

University of Scranton Students KC3UAW and KD2UHN with W2NAF at W3USR

New ARDC-Funded W3USR HF Antennas

New ARDC-Funded

Ham SCT Ham radio Science Citizen Investigation

HamSCI at 2023 Dayton Hamvention

A collective that allows university researchers to collaborate with the amateur radio community in scientific investigations.

Objectives:

- Advance scientific research and understanding through amateur radio activities.
- **2. Encourage** the development of new technologies to support this research.
- **3. Provide** educational opportunities for the amateur radio community and the general public.

HamSCI's Primary Interest: The Ionosphere

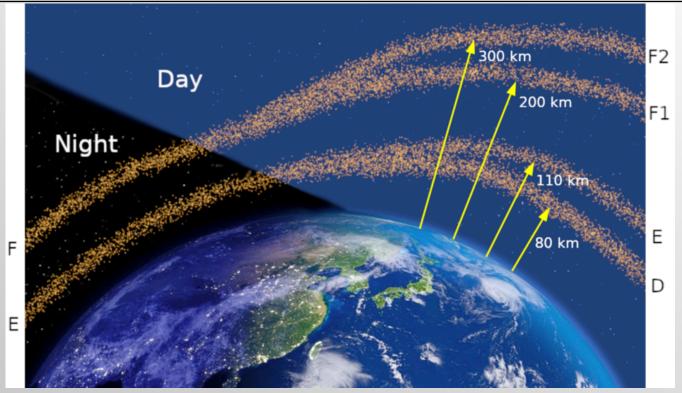
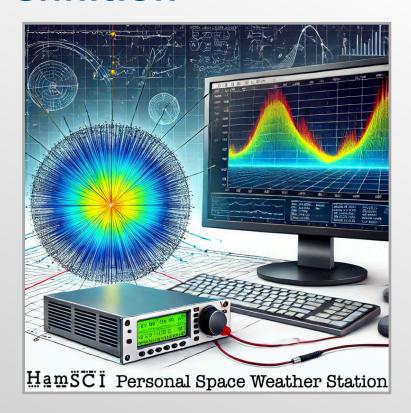


Figure by Carlos Molina (https://commons.wikimedia.org/wiki/)

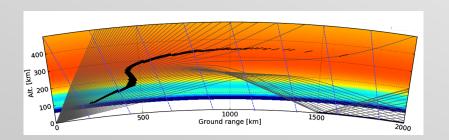
HamSCI PSWS Network: What, Why, How

◆ What is the PSWS Network?


- ♦ Why build (or expand) such a network?
- ◆ How can hams (and SWLs) participate?

HamSCI PSWS Network: Definition

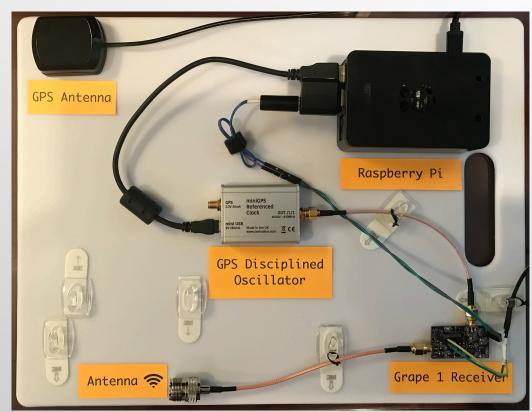
The HamSCI Personal Space Weather Station (PSWS) Network is a Distributed Array of Small Instruments (DASI*)


*NSF Funding Program 24-538 announced February 9, 2024

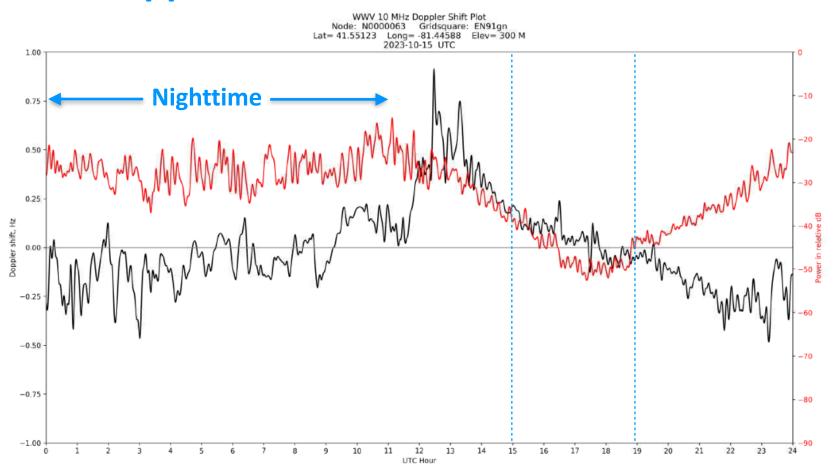
HamSCI PSWS Network: What and Why

What it is: An interconnected system of instruments, making frequent measurements across a wide geographic area

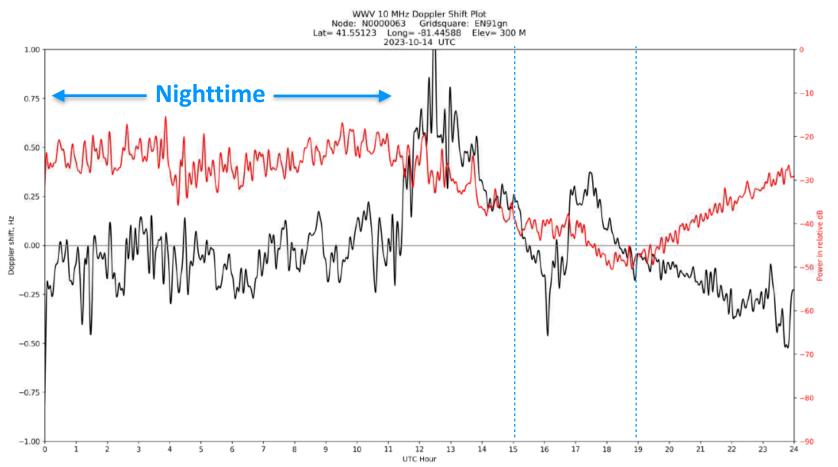
Why build it: The network will help in understanding the local, regional, and global scale processes that are essential for addressing fundamental questions in solar and space physics.



History Lesson: HamSCI's GRAPE Network


HamSCI, thorugh its volunteers and participating institutions, designed and deployed the GRAPE* series of instruments prior to the North American solar eclipses in 2023/24.

*GRAPE = Great Radio Amateur Propagtion Experiment



GRAPE Doppler Plot - Quiet Solar Conditions

GRAPE Doppler Plot - Annular Eclipse Day, 14 October 2023

HamSCI PSWS Network

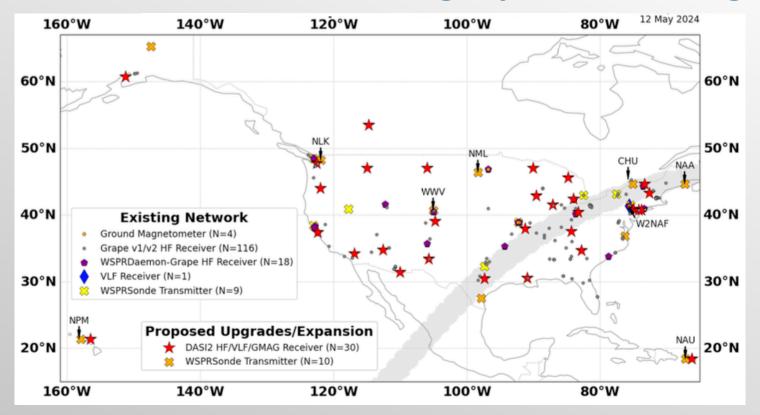
Definition: An interconnected system of instruments, making frequent measurements across a wide geographic area

Goal: Determine the local, regional, and global scale processes that are essential for addressing the fundamental questions in solar and space physics - including radio wave propagation

PSWS Network: Frequent Measurements

HamSCI's current GRAPE* instruments are operating 24/7/365, creating, at a minimum, one data point *per second, per instrument*

The future PSWS instruments will operate similarly - monitoring, collecting, uploading data to a central server


*GRAPE = Great Radio Amateur Propagation Experiment

To learn more about GRAPEs, visit hamsci.org/psws

# Station Node Number	N0000063			
# Callsign	AF8A			
# Grid Square	EN91gn			
# Lat Long Elev	41.55123 -81.4588 300			
# City State	Mayfield Village OH			
# Radio1ID	Grape_Gen_1_Rcvr_1			
# Antenna	Chameleon RXL Loop			
# Frequency Standard	LB GPSDO			
# System Info	RasPi4B			
# Beacon Now Decoded	WWV10			
UTC	Freq	Freq Err	Vpk	dBV(Vpk
2025-01-31T00:00:00Z	9999999.789	-0.211	0.027568	-31.19
2025-01-31T00:00:01Z	9999999.995	-0.005	0.033579	-29.4
2025-01-31T00:00:02Z	1000000.007	0.007	0.038137	-28.3
2025-01-31T00:00:03Z	9999999.920	-0.080	0.045220	-26.8
2025-01-31T00:00:04Z	9999999.845	-0.155	0.045637	-26.8
2025-01-31T00:00:06Z	9999999.603	-0.397	0.037036	-28.6
2025-01-31T00:00:07Z	9999999.535	-0.465	0.032896	-29.6
2025-01-31T00:00:08Z	9999999.570	-0.430	0.031376	-30.0
2025-01-31T00:00:09Z	9999999.604	-0.396	0.034110	-29.3
2025-01-31T00:00:10Z	9999999.838	-0.162	0.036455	-28.7

PSWS Network: Wide Geographic Coverage

Expanded PSWS Network: Key Elements

Rx Hardware: Three Instruments

Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter

Host Locations

- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment (ie RF quiet)
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

PSWS Network: Critical Elements

Rx Hardware: Three Instruments

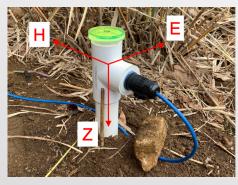
Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter

Host Locations

- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment (ie RF quiet)
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power


PSWS Network: Rx Hardware

WSPRDaemon Grape Based on RX888 SDR

Active HF Antenna

Ground Magnetometer

Active VLF Antenna + VLF rx equipment

Images for discussion purposes only - not to scale - actual hardware may be quite different!

PSWS Network: Critical Elements

Rx Hardware: Three Instruments

Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

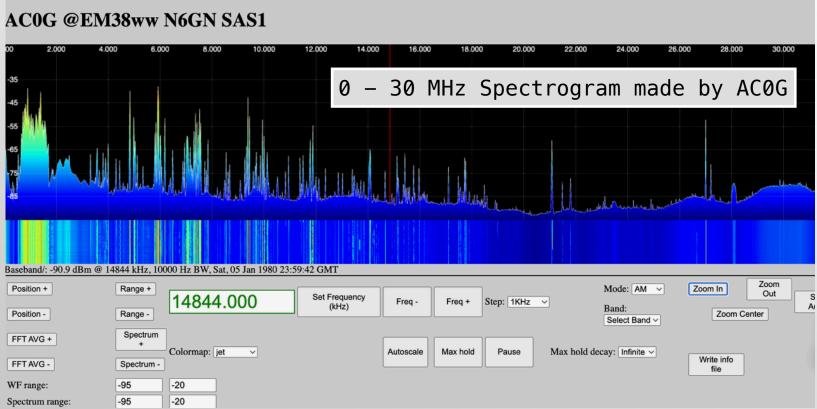
WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter

Host Locations

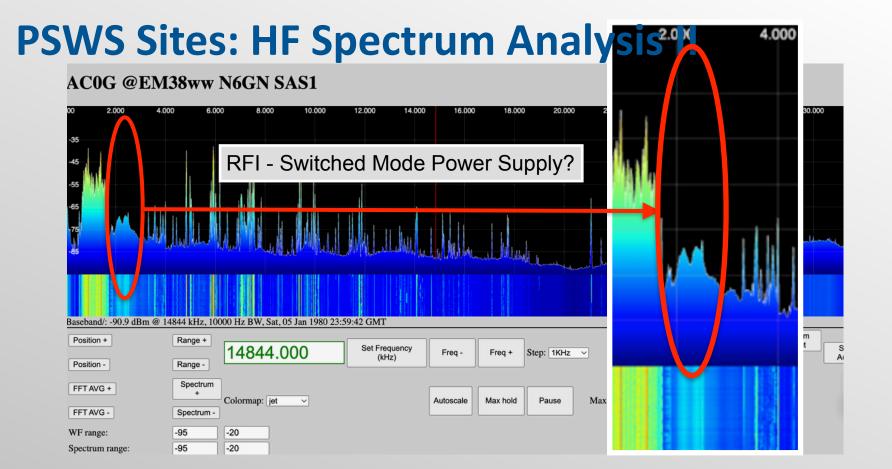
- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

Rx Site Selection Challenge

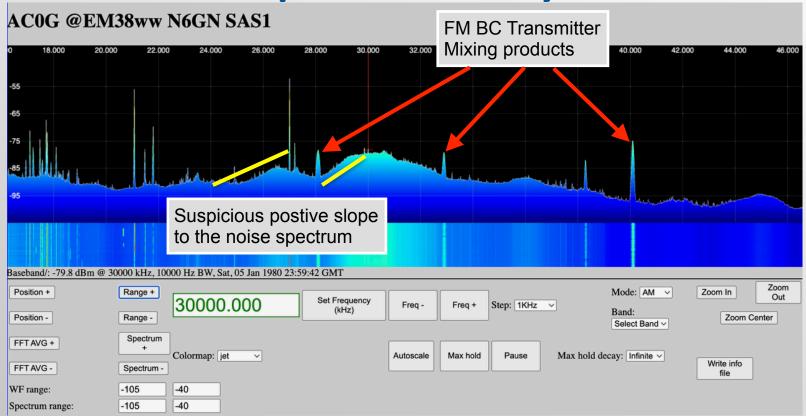
Herein lies the challenge, finding sites which are...

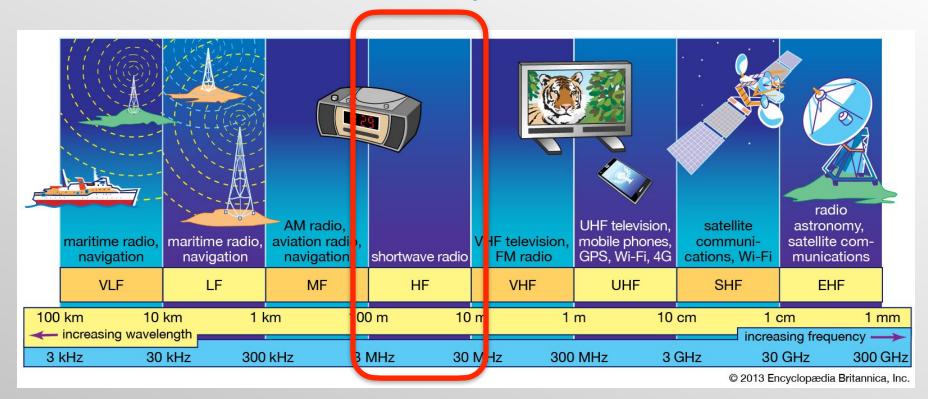

...'RF Quiet' - on the HF bands. This means minimal noise sources (EMI, powerful local transmitters, mixing products)

...'open field' sites for the VLF antenna - with significant separtion from sources of mains harmonics

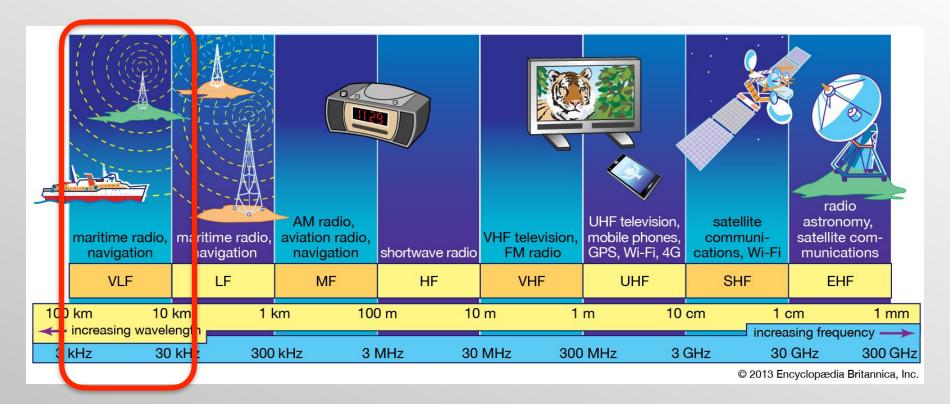

...able to bury a ground magnetometer, location free from electromagnetic influences (current carrying conductors, vehicles, etc.)

PSWS Sites: HF Spectrum Analysis

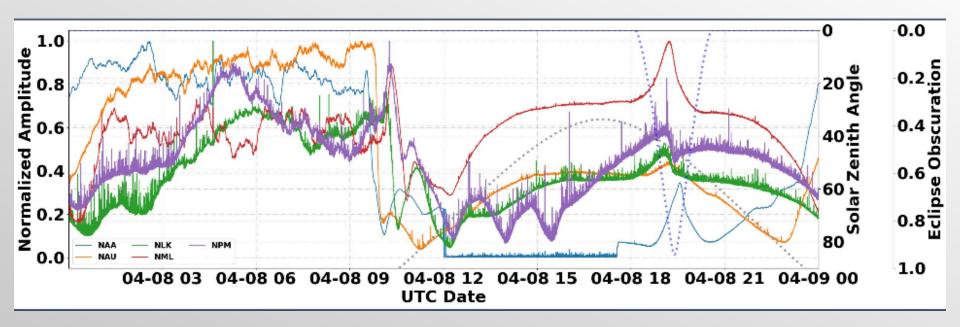




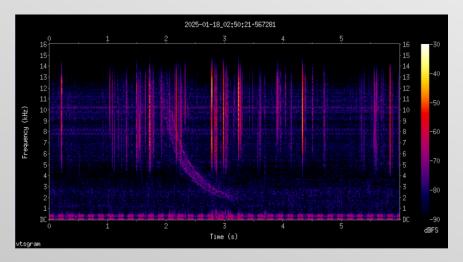
PSWS Sites: HF Spectrum Analysis

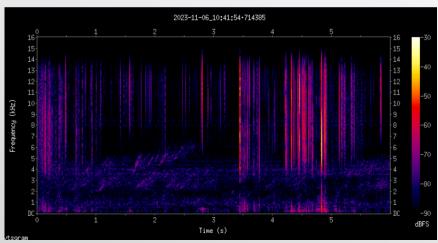


PSWS Interest: HF Bands, 1.8 - 52 MHz



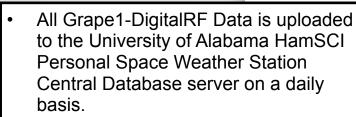
PSWS Interest: VLF Band, 3-50 kHz


PSWS Sites: VLF Observations (3-50 kHz)



Apr 8, 2024 VLF Recpetion (by Jonathan Rizzo, KC3EEY, Scranton, PA)

VLF Whistlers and Dawn Chorus Reception



Nov 6, 2024 VLF Recepetion (by Jonathan Rizzo, KC3EEY, Scranton, PA)

HamSCI PSWS Central Website

- Database is accessible from:
- psws.hamsci.org
- <u>pswsnetwork.eng.ua.edu</u>
- Green points in this figure show actively reporting stations on 12 Dec 2023
- Over 30 Grape1-DRFs provided observations for the 14 Oct 2023 annular eclipse

PSWS Network: Critical Elements

Rx Hardware: Three Instruments

Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

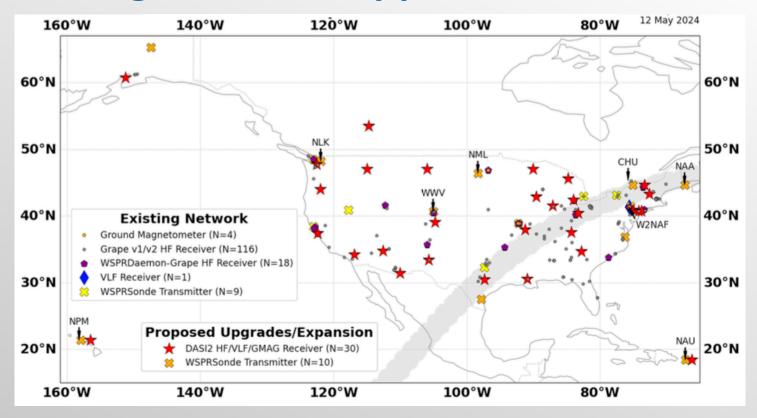
WSPRSonde 8-band, GPS-disciplined transmitter

Host Locations

- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment (ie RF quiet)
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

TX Hardware: WSPRSonde 8

Simultaneous 8-channel WSPR and FST4W transmitter, 0-1 watt perchannel output. Extreme frequency accuracy and stability for precision propagation research.


Available from Turn Island Systems (state of WA)

HamSCI is Asking for Your Support

We are looking to fill out this map. Hosts and sites are needed across the US

Deployments will be phased in over the next 6-24 months

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate both local and continental space effects, including those caused by traveling ionospheric geomagnetic storms.

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate both local and continental space effects, including those caused by traveling ionospheric geomagnetic storms.

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate local, regional and continental space weather effects, including those caused by traveling ionospheric geomagnetic storms.

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate both local and continental space effects, including those caused by traveling ionospheric geomagnetic storms.

The Ionosphere Deserves Continued Study

HamSCI sponsored many events during the past seven years, and though they generated terrabytes worth of data, by no means are we 'done'.

- The Sun throws off flares and ejects huge masses of plasma towards Earth,
 impacting the ionosphere there are many more solar events in our future
- The Earth itself generates interesting phenomena, such as TIDs
- GPS signals pass through the ionosphere.
- Starlink and other Internet constellations pass signals through the ionosphere.
- Shortwave radio is not 'dead'. Ask the military or the high frequency traders who covet our HF allocations

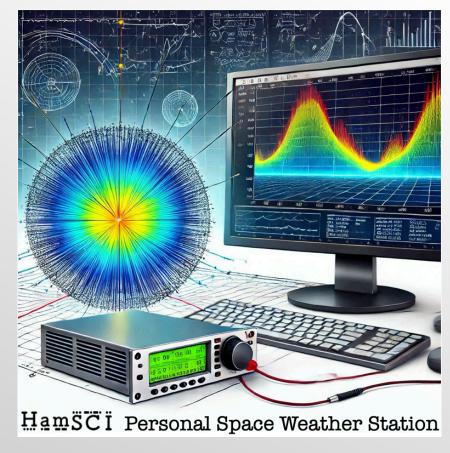
How Can You Participate?

- Visit the HamSCI Booth on Friday, Saturday or Sunday
- Join HamSCI's Google Groups attend our weekly Zoom telecons
- Some may wish to self-fund (always appreciated!)

NSF grants may cover hardware costs for a limited number of stations

(both Rx and Tx)

3 WSPRDaemon Grape Receivers at W2NAF

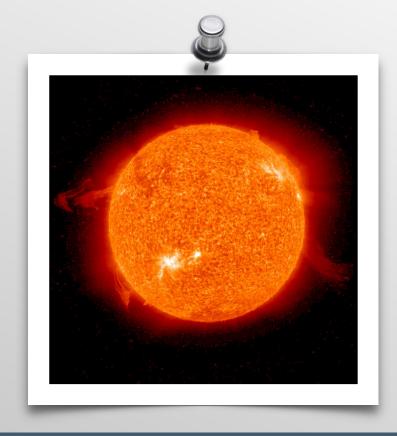

Questions and Sign-Up

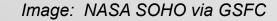
Sign up to our list of interested hosts: hamsci.org/site-search

Questions:

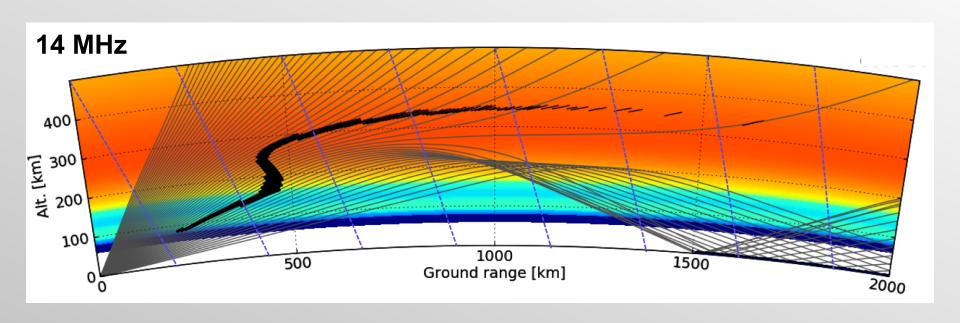
hamsci@hamsci.org

DASI2: NSF HamSCI Grantees, 2025-2028





NSF Grants 2432821, 2432822, 2432823, 283824


Cycle 25 - Feel the Excitement!

Ionospheric Modeling - Theory vs Practice

PHaRLAP Raytrace by W2NAF

