Automatic

__ink

stablishment

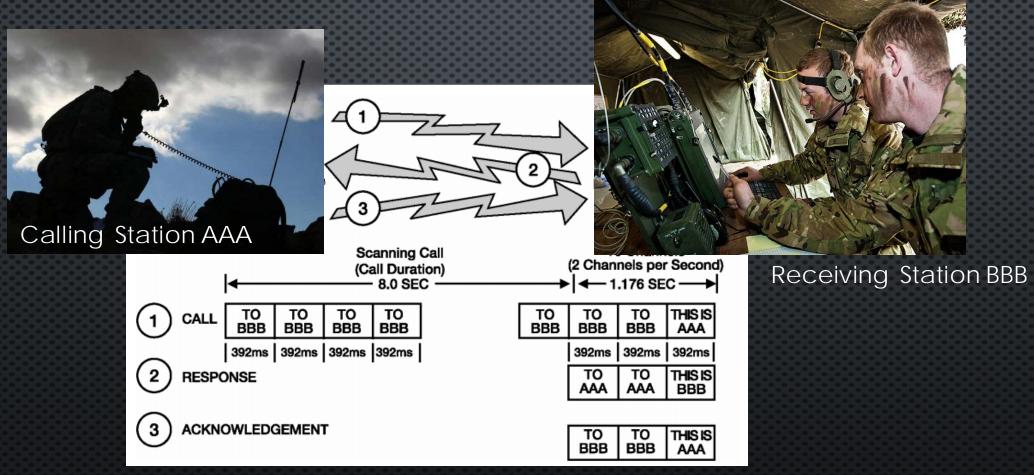
Discussion Review

- 1. What is Automatic Link Establishment (ALE)?
- 2. General Overview of How ALE Works
- 3. ALE 2G or 3G What is the Difference?
- 4. Link Quality Analysis
 - ALE Sounding
 - Passive Link Quality Analysis
- 5. Hardware versus Software ALE
- 6. HF ALE Group Scan Groups
- 7. Software ALE Alternatives

1. What is Automatic Link Establishment (ALE)?

- ALE is a worldwide standard for HF radio communications system which enables an HF radio station to initiate a circuit, between calling station and receiving HF radio stations.
- ALE provides a reliable method of calling and connecting stations during constantly changing HF
 ionospheric propagation, reception interference, and congested HF channels.
- An ALE radio system combines an HF SSB radio transceiver with the necessary computer systems and modem to meet the ALE standards.
- The ALE system is programmed with a unique ALE address, similar to a phone number.
 - When not actively linked with another station, the HF transceiver constantly scans through a list of HF frequencies, listening for any ALE signals transmitted by other radio stations.
- When it decodes calls and soundings sent by other stations
 - The system ascertains if the call is for the receiving station,
 - and uses the bit error rate to store a quality score for that frequency and transmitter location/address.

1. What is Automatic Link Establishment (ALE)?


To reach a specific station via ALE, the caller enters the ALE Address in the calling station's system.

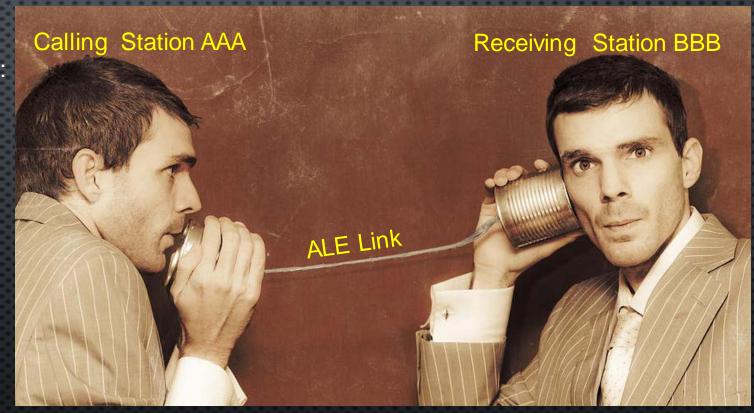
- The ALE controller selects the best available idle channel for that destination address (based on link quality analysis data).
- The ALE system then transmits a brief selective call signal containing the ALE address the intended recipient.
- When the receiving scanning station detects ALE activity, it stops scanning and stays on that channel
 until it can confirm whether or not the call is for that station. If the call is for that station,
 - The two stations' ALE controllers automatically handshake to confirm that a link of sufficient quality has been established, then notify the operators that the link is up.
 - If the receiving station fails to respond or the handshaking fails, the calling ALE station selects
 another frequency either at random or by making a channel estimation based on predictive
 algorithms.

1. What is Automatic Link Establishment (ALE)?

- Upon successful linking,
 - The ALE software indicates the call sign or other identifying information of the linked station, similar to Caller ID.
 - The receiving operator then answers the call by voice, data link, or the ALE built-in short text message format.
 - Digital data can be exchanged via modem (hardware or software).
 - The ALE built-in short text messaging facility (AMD) can be used to transfer short text messages to allow operators to coordinate external equipment such as phone patches or for short tactical messages.
 - Once the comms are complete, one of the stations will hang up or terminate the link. This allows stations to go back to scanning.
- ALE allows radio operators a with of minimum HF propagation and experience to contact another station via NVIS or skywave circuits.

2. General Overview of How ALE Works.

2. General Overview of How ALE Works.


The ALE Link is the conduit, providing a circuit of know propagation and signal quality between two stations for:

- VOICE,
- DATA (not limited to MIL-STD),
- AMD (texting and commands), and
- PHONE PATCH communications.

Think of ALE as the dial up phone line establishing a point to point circuit;

 the microphone providing voice, and

 the modem providing data communication.

3. ALE 2G or 3G What is the Difference?

2G ALE is what we use as MARS station

- More widespread with hardware and software solutions.
- Surplus hardware solutions are available used and new.
- Requires no external sync signal, requires HF only.
- The de facto standard for current amateur emergency services use.

3G ALE offers

- Reliability in linking to time base synchronization via satellite or other synchronization solutions.
- Shorter link acquisition time due to time slots available because of synchronization.
- More likely to link in an extremely poor HF environments.
- Poor market penetration to the amateur community, generally limited to military, government, and commercial uses.

3. ALE 2G or 3G What is the Difference?

- Standards for ALE
 - Standards for ALE are based on
 - US MIL-STD 188-141D
 - 2G ALE is technically described in Appendix A of this document.
 - 3G ALE is technically described in Appendix C of this document.
 - Federal Standard 1045A, Telecommunications: HF Radio Automatic Link Establishment
 - NATO STANAG 4538-Technical standards for an automatic radio control system (arcs) for hf communication links.
 - NTIA High Frequency ALE Radio Application Handbook

4. Link Quality Analysis (LQA).

The LQA process measures the quality of a channel by placing a score on the circuit between two stations. LQA incorporates three types of link analysis information:

- bit error ratio (BER),
- Signal + noise + distortion to noise + distortion ratio (SINAD),
- a measure of multipath (optional).

The LQA scores are stored in memory for future use.

The channel with the highest LQA score has the highest probability of being suitable for communication.

4. Link Quality Analysis (LQA).

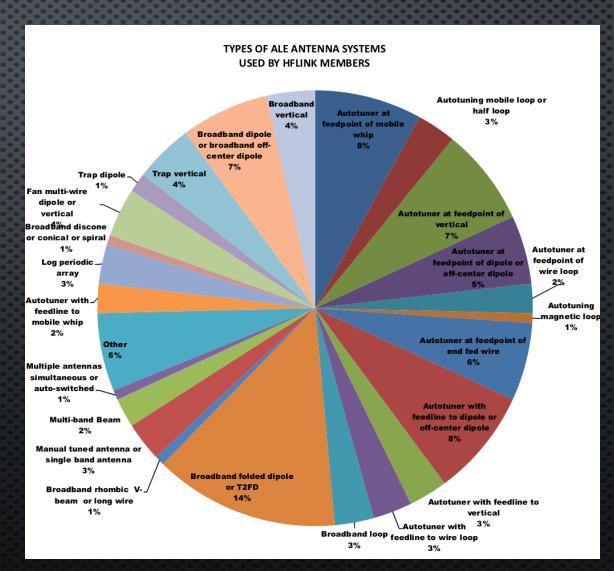
There are 3 method of obtaining LQA scores:

- Sounding
 - non-linking one-way one-to-many transmission;
 - stations that hear it calculate an LQA score.
- LQA Call
 - Uses two-way, one-to-one transmissions;
 - each of 2 stations gets an LQA score for the path to the other.
- Passive Link Quality Analysis
 - An LQA score can be calculated from an intercepted ALE transmission (passive) – A calls B, and C calculates LQA between C and A.

5. Hardware versus Software ALE.

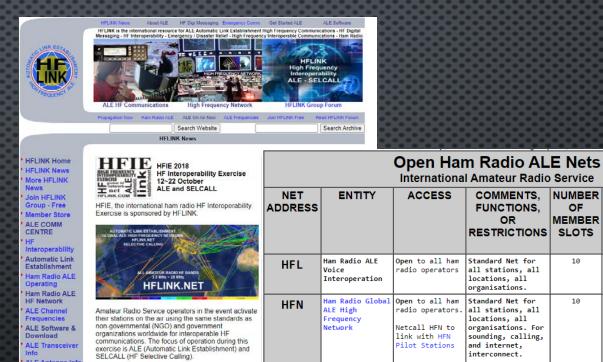
It's the age-old question, hardware versus software, whether in a modem or an ALE system, the answer is hardware is better! But at what cost?

- Hardware is generally a dedicated system based on a commercial grade radio able to withstand high duty cycles but has no VFO on most models.
- Systems from CODAN, ICOM, Barrett, and others are high-performance systems, with integrated hardware modems providing exemplary performance but designed for commercial use (little user feedback and should be programed by a PC).
- Alternatives include hardware ALE controllers, normally integrated with a MIL-STD-188-110 modem from companies like RapidM. These external controllers generally require interfacing to your particular radio.
- Hardware ALE radio systems are an investment costing anywhere from \$2500-\$7000 per radio.


As important as the ALE radio, and maybe more important is the antenna system.

This chart shows the variety of antenna systems as surveyed by HF link, the amateur radio ALE group.

Rodney's opinion on this controversial issue:


- I operate a broadband terminated 3 wire dipole inverted V at
- 38 feet peak, 12 feet at the ends.
- To compensate for the terminated dipole, I operate with a 500 watt amplifier.

Your mileage may vary.

6. HF ALE Group

- Provides support for the amateur community related to ALE.
- Coordinates frequencies and scan groups for amateur ALE.
- Provides technical assistance ranging from software, radios, antennas.
- Provides a central clearinghouse for all things ALE including a very informative forum for the new user.
- http://hflink.com/

QRZ

GPR

RPT

MAH

Open to all ham

radio operators

Open to all ham

Open to all ham

radio operators.

pen Liaison

ith non-amateu

Mainly for text

keyboarding QSOs on the alternativ data channels.

ALE Geo Position

Reports Only, via GPR standard fixe format AMD with TWS (This Was)

General Reporting

Text AMD with TWS (This Was)

Disaster Relief

mergency Tests

or Simulated

via any format

General use.

ALE-GPR use

Status and

bulletin

reporting.

international

Disaster Relief

ind Emergency

nteroperative

		Stations.		-
/e	3	Any ham may join in any SLOT in any random order.	Alternative Data Channels	
a ed	3	Any ham may join in any SLOT in any random order.	HFN Channels	
5	3	Any ham may join in any SLOT in any random order.	HFN Channels	
	10	configurations	(mainly SSB	
			42	

MEMBERS

Any ham may

join in any

SLOT in any

Any ham may

All other

slots are

HFN Pilot

Stations.

reserved for

only.

join in SLOT#1

random order

CHANNELS

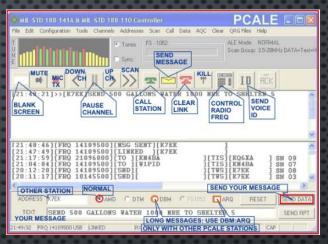
USED FOR

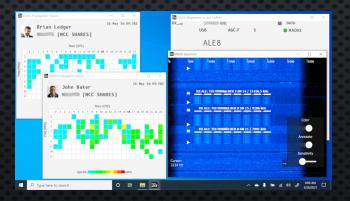
THE NET

HFL Channels

FN Channels

7. Software ALE


- Requires an external computer, which controls your radio for scanning and transmitting.
 - The same computer supports a modem for digital traffic.
- Graphical user interface point and click. All major controls for the radio are accessible through the computer.
- Automates programming the radio through the application.
- Uses computer keyboard to prepare text messages.
- More information available to the user about what is going on.



- 7. Software ALE Alternatives. PC ALE
- Been around quite some time
- Windows-only

ION2G

- Comprehensive set of features
- Status reporting
- · Windows, MacOS X, Linux, Raspberry Pi

automatic

ink

stablishment

Questions